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ABSTRACT 

Filarial nematodes are important helminth parasites of the tropics 
and a leading cause of global disability. They include species respon­
sible for onchocerciasis, lymphatic filariasis and dirofilariasis. A 
unique feature of these nematodes is their dependency upon a sym­
biotic intracellular bacterium, Wolbachia, which is essential for nor­
mal development and fertility. Advances in our understanding of the 
symbiosis of Wolbachia bacteria with filarial nematodes have made 
rapid progress in recent years. Here we summarise our current un­
derstanding of the evolution of the symbiotic association together 
with insights into the functional basis of the interaction derived from 
genomic analysis. Also we discuss the contribution of Wolbachia to 
inflammatory-mediated pathogenesis and adverse reactions to anti­
filarial drugs and describe the outcome of recent field trials using 
antibiotics as a promising new tool for the treatment of filarial in­
fection and disease. 

1. THE CELLULAR ENVIRONMENT OF WOLBACH/A IN 
NEMATODES 

1.1. Habitat 

Initial descriptions of bacterial-like structures using electron micros­
copy and more recent studies by immuno-histology have provided a 
comprehensive description of the distribution of Wolbachia in nem­
atode tissues (McLaren et al., 1975; Kozek, 1977; Kozek and Fig­
ueroa, 1977; Taylor eta!., 1999; Peixoto et al., 2001; Hoerauf et al., 
2003a; Kramer et al., 2003; McGarry et al., 2004). They are found 
throughout all the stages of the life cycle of the nematode although 
they occur in varying proportions between individual worms and 
different developmental stages (Kozek, 1977; Kozek and Figueroa, 
1977; McGarry et al., 2004). In adult nematodes, Wolbachia is pre­
dominantly found throughout the hypodermal cells of the lateral 
cords (Figure 1 ). The bacteria occur within host-derived vacuoles in 
variously sized discrete groups ranging from a few organisms, often 
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Figure I Wolbachia (stained red) distributed throughout the lateral hy­
podermal cord cells and embryos within the uterus of Onchocerca volvulus. 
(Image courtesy of D.W. Buttner.) 

clustered around hypodermal nuclei, to areas where they almost 
completely fill the cellular environment reminiscent of bacteriocyte­
like structures. In females, Wolbachia is also present in the ovaries, 
oocytes and developing embryonic stages within the uteri, whereas 
they have not been demonstrated in the male reproductive system 
(Taylor and Hoerauf, 1999; Sacchi et a!., 2002; Kozek, 2005). This 
suggests that the bacterium is vertically transmitted through the cy­
toplasm of the egg and not through the sperm (Kozek, 1977; Kozek 
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and Figueroa, 1977; Taylor eta!., 1999). The concomitant phylogeny 
of Wolbachia with that of the host filariae (Casiraghi et a!., 2001) 
provides indirect evidence that transmission has been at least pre­
dominantly vertical. 

1.2. Growth and Population Dynamics 

We know little of the mechanisms of reproduction and growth of the 
bacteria but structural observations and studies on the population 
dynamics of the bacteria within different developmental stages of the 
nematode have unravelled a more complex pattern of cell division at 
the individual and population level (McGarry et a!., 2004; Kozek, 
2005). The bacterial cells are plieomorphic and range in size from 0.2 
to 4 11m in length (Kozek, 2005). In addition to the typical binary 
fission commonly used by bacteria, an alternative more complex cycle 
has been suggested in the form of small dense coccoid stages, which 
appear to form in the parent organism through condensation of the 
cytosol with features similar to the formation of elemental bodies in 
the Chlamydiae (Kozek, 2005). At the population level, quantifica­
tion of bacterial numbers in different developmental stages has been 
studied in Brugia malayi (McGarry et a!., 2004; Fenn and Blaxter, 
2004). The numbers of bacteria remain static in microfilariae and the 
mosquito-borne larval stages (L2 and L3), with the lowest ratios of 
Wolbachiajnematode DNA. However, within the first week of infec­
tion of the mammalian host, bacteria numbers increase dramatically 
and the bacteria/worm ratio is the highest of all life-cycle stages. The 
rapid multiplication continues throughout L4 development, so that 
the major period of bacterial population growth occurs within the 
first month of infection of the definitive host. Microscopy confirms 
that there are few bacteria in mosquito-derived L3 but many, in large 
groups, in L4 collected 1-3 weeks after infection. It appears that the 
large clusters of bacteria observed throughout the hypodermal cord 
of adult worms originate from this rapid period of division, which 
thereafter are maintained at that level as demonstrated in adult male 
worms up to 15 months of age. In females, bacterial numbers increase 
further as the worms mature and as the ovary and embryonic larval 
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stages become infected (McGarry et a!., 2004). Further studies on the 
dynamics of population levels in other filarial species are going on 
and should serve to further define the key features of the symbiotic 
association. Individual worms appear to vary widely in their bacterial 
load, which may reflect a dynamic change of population size over 
time or if constant the potential for a selective advantage in terms of 
longevity or fecundity in worms carrying more bacteria. A recent 
study comparing the different 'forest' and 'savanna' strains of 0. 
volvulus of West Africa found a significantly greater ratio of Wo­
lbachia DNA to nuclear DNA in the severe, ocular disease causing 
'savanna' strain, supporting the role of the bacteria in the pathogen­
esis of ocular onchocerciasis (Higazi et a!., 2005). 

One might predict that an obligate symbiont that provides a con­
tinuous essential resource for its host would show a constant regu­
lated population. The changes in the dynamics of Wolbachia 
populations throughout the life cycle may therefore illustrate the 
points at which the symbiotic relationship is critical. The rapid in­
crease in bacterial numbers during the period of larval and embryonic 
development is consistent with a role for the bacteria in these proc­
esses, two processes compromised by antibiotic treatment. The pat­
tern of population growth would also be compatible with a role in 
evasion of mammalian immunity and for the long-term survival of 
adult worms. It also can explain the differential activity of bacterio­
static antibiotic treatment on distinct developmental stages, in which 
larval and embryonic development are associated with rapidly divid­
ing bacteria and are affected soon after antibiotic treatment, whereas 
the more slowly dividing populations in adults take longer to deplete 
and for the consequences to show. This is a feature observed follow­
ing doxycycline treatment of Wuchereria bancrofti (see Section 3.3). 

2. TAXONOMY AND DIVERSITY OF THE GENUS 
WOLBACH/A 

The genus Wolbachia includes a group of intracellular bacteria found 
in arthropods (insects, spiders, mites and crustaceans) and in filarial 
nematodes (Werren, 1997; Taylor and Hoerauf, 1999; Bandi et a!., 
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200la, b; Stevens eta!., 2001). This genus belongs to the family An­
aplasmataceae in the order Rickettsiales (alphaproteobacteria). Pres­
ently there is a single valid species in the genus Wolbachia, i.e. 
Wolbachia pipientis. The other species previously assigned to this ge­
nus ( W persica and W pipentis) do not belong to the alphaproteo­
bacteria and should be removed from the genus Wolbachia (Dumler 
et a!., 2001; La Scola et a!., 2005). 

Despite the existence of a single valid Wolbachia species, this genus 
encompasses a wide variety of molecular diversity. Based on the 
analysis of different genes (16S rDNA; ftsZ; dnaA; wsp), six main 
phylogenetic lineages of Wolbachia have been described (Lo et a!., 
2002; Casiraghi et a!., 2003), which are provisionally indicated as 
supergroups A-F (Figure 2). Supergroups A and B include most of 
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Figure 2 Wolbachia phylogeny based on ftsZ gene sequences. The un­
rooted tree was obtained using the maximum likelihood (ML) approach. 
Species names at the nodes are those of the host species. Representatives of 
Wolbachia supergroups A-F are shown (Lo et al., 2002). In addition, Wo­
lhachia from a flea (Ctenocephalides felis) and from a recently examined 
filarial species (Dipetalonema gracile) are included, since these bacteria can­
not be assigned to the above supergroups (Fischer eta!., 2002a; Casiraghi et 
a!., 2004). The branch leading to Wolhachia from D. gracile is broken, since 
the ftsZ gene sequence is not available for this bacterium (the positioning is 
based on Casiraghi et al., (2004) and on unpublished GroEL gene sequences; 
M. Casiraghi, pers. comm.). 
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the wolbachiae thus far detected in arthropods, while supergroups C 
and D include most of those found in filarial nematodes. The re­
maining two supergroups are less well known. Supergroup E encom­
passes wolbachiae from collembola; supergroup F includes those 
found in termites and in the filarial nematode Mansonella ozzardi. In 
addition, unpublished results indicate that further main lineages of 
Wolbachia may be described in the future, collecting wolbachiae 
found in both arthropods (e.g. some flea species) and filarial nem­
atodes (M. Casiraghi eta!., unpublished). 

Which taxonomic status should be attributed to the above super­
groups of Wolbachia? Bacterial strains showing over 3% nucleotide 
differences in their 16S rDNA genes are frequently assigned to dif­
ferent species (Stackebrandt and Goebel, 1994). The level of diver­
gence between the six main supergroups of Wolbachia is around 3%. 
This might suggest that the six main lineages could be elevated at the 
species rank. However, the overall molecular diversity observed in the 
genus Wolbachia is probably still to be uncovered. The overall phylo­
geny of Wolbachia that currently appears as a tree with six main 
branches might become saturated in the future as a result of the 
detection and characterization of new Wolbachia lines found in new 
host species. Should Wolbachia tree become a bush, definition of the 
species boundaries might become more difficult. Based on this reason 
and in the absence of a firm reconstruction of the branching order of 
the main lineages, there is a general consensus of the Wolbachia 
community to maintain a single species name (Bandi et al., 2003), 
until new data are generated in different research areas (comparative 
genomics; molecular phylogenetics; screening for Wolbachia in new 
hosts, etc.). 

Besides the issue of whether the different lineages of Wolbachia 
should be elevated to the species rank or maintained in the same 
species, the divergences between these lineages are certainly not neg­
ligible. For example, at the 16S rDNA level, the Wolbachia found in 
the mosquito Culex pipiens (supergroup B) and in the filarial nem­
atodes W bancrofti (supergroup C) are more different than rickett­
siae assigned to different species (e.g. Rickettsia ricketsii vs R. conorii; 
R. prowazekii vs R. ricketsii). It should also be noted that, based 
on the rates of molecular evolution estimated for bacteria, the 
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evolutionary separation between the main lineages of Wolbachia 
may have occurred 50-100 million years ago (Werren eta!., 1995a; 
Bandi et a!., 1998). 

2.1. Wolbachia in Arthropods 

Wolbachia has been detected in most of the insect orders thus far 
screened, as well as in a variety of other arthropods (mites, crusta­
ceans, spiders). Particularly in insects this bacterium appears wide­
spread, with estimated proportions of infected species ranging from 
"-'20 to ,..,_,75% (Werren et a!., 1995b; Jeyaprakash and Hoy, 2000). 
These estimates have been obtained through polymerase chain reac­
tion (PCR) screening of field-collected insect specimens, and 
phenotypic effects associated with the presence of Wolbachia had 
usually not been determined in the context of these prevalence studies. 
However, in most of the host-Wolbachia system thus far character­
ized, the presence of this bacterium is usually associated with various 
kinds of alterations of the host reproduction: parthenogenesis, killing 
of male embryos, feminization of genetic males and cytoplasmic in­
compatibility (CI) (Stouthamer et al., 1999). In addition, there is a 
strain of Wolbachia, which appears needed for host reproduction 
(Dedeine eta!., 2001), and another one whose behaviour is more sim­
ilar to that of "traditional" pathogens, with invasion of the host tissues 
and, eventually, the death of the host (Min and Benzer, 1997). The 
kind and strength of effect that Wolbachia will determine on the host is 
linked to the genotypes of the bacterium and the host, on the density 
of the bacteria and on the interaction between the different strains co­
infecting a given host (Bordenstein et a!., 2003b; Ikeda et a!., 2003). 

2.2. Wolbachia in Nematodes 

Before we discuss the distribution of Wolbachia among filarial species, 
we should briefly summarize the classification of these nematodes. 
Filarial nematodes belong to the order Spirurida. The common names 
"filariae" and "filarial nematodes" are generally used to refer to a 
coherent group of spirurid nematodes that Anderson and Bain (1976) 
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have collected into the superfamily Filarioidea, composed of the fam­
ilies Filariidae and Onchocercidae. These families encompass, respec­
tively, two and eight subfamilies (Filarinae and Stephanofilarinae; 
Waltonellinae, Setariinae, Oswaldofilariinae, Icosiellinae, Splendid­
ofilariinae, Lemdaninae, Onchocercinae and Dirofilariinae). Within 
the order Spirurida, the groups that appear more closely related to the 
Filarioidea are the Thelaziodiea and Habronematoidea (Anderson, 
2000). The relationships among the 10 subfamilies of the Filarioidea 
are not firmly established, even though there is some evidence for a 
deep branching of the Filariidae (Anderson, 2000; Casiraghi et al., 
2004). Within the Onchocercidae, the lineages leading to the Setarinae, 
and Waltonellinae appear deep (Figure 3), while the evolutionary 
radiation of the subfamilies Onchocercinae and Dirofilariinae might 
have occurred after the splits of these two lineages (Casiraghi 
et al., 2004). It must be emphasized that the Onchocercinae and 
Dirofilariinae do not form monophyletic lineages. The genera in these 
subfamilies are frequently intermixed, and might be collected into a 
single subfamily (Casiraghi et a!., 2004). It is also important to note 
that all the filariae that cause known diseases in humans are members 
of these two subfamilies. 

Based on the data thus far obtained, the presence of Wolbachia in 
filarial nematodes appears restricted to the subfamilies Onc­
hocercinae and Dirofilariinae, with 16 positive species out of the 21 
examined (Table 1 ). Even though only a limited number of specimens 
and species have been examined for the remaining subfamilies of 
filarial nematodes and for the closely related superfamily Thelazio­
idea, these groups have consistently been found negative. Within the 
Onchocercinae and Dirofilariinae, there are both positive and neg­
ative species. Negative species are thus both outside the group en­
compassing the positive ones, as well as inside this group. Based on 
the available information, two different scenarios can be hypothe­
sized: (1) the association between Wolbachia and filarial nematodes 
was established after a single infection along the lineage leading to the 
Onchocercinae/Dirofilariinae, and current negative species in these 
subfamilies are the results of secondary losses; (2) the association 
between Wolbachia and filarial nematodes was established several 
times along various lineages of the Onchocercinae/Dirofilariinae; in 
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············ ·················· ············ 
Wolhachia pipientis··········································· ·························· 1---- Ochoterene/La sp. 1 

Ancestral absence of Waltonellinae 
Wolbachia pipientis 

I Thelazia spp. I 

Thelaziidae 

Thelazioidea 

Onchocercidae 

Filariidae 

Filarioidea 

Figure 3 A hypothetical scenario of the evolution of Wolbachia infection 
in filarial nematodes. The tree represents the phylogeny of filarial nematodes 
(Filarioidea) reconstructed in Casiraghi et al. (2004). Wolbachia could have 
been ancestrally absent in the sister groups of filarial nematodes (represented 
in the tree by Thelazia spp.) and in the deep-branching filarial lineage Fi­
lariidae. Within the family Onchocercidae, Wolbachia could also have been 
ancestrally absent in the lineages Setariinae and Waltonellinae. During the 
evolution of the family Onchocercidae, Wolbachia could have been acquired 
on the lineage leading to the subfamilies Onchocercinae and Dirofilariinae, 
and then lost along the lineages leading to Acanthocheilonema spp., Loa loa, 
Onchocerca flexuosa, Litomosoides yutajensis, Mansonella perstans (outlined 
in boxes). The positions of Mansonella spp. and Onchocerca flexuosa are 
based only on their taxonomic affiliations and are thus indicated by dashed 
lines (gene sequence from these species have not yet been used in phylo­
genetic analyses). Classification of filarial nematodes is based on Anderson 
and Bain (1976) and Bain et al. (1982). (Reproduced from Casiraghi et al., 
2004.) 
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Table 1 Presence or abser 

Present" 

Brugia malay/2 

Brugia pahang/2 

Brugia timor/ 
Dipetalonema gracile4 

Dirofilaria immitis5 

Dirofilaria repens5 

Litomosa westi 4 

Litomosoides siymodontisu' 
Litomosoides brasileiensis4 
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Table 1 Presence or absence of Wolbachia from filarial nematodes 

Present" 

Brugia malay{2 

Brugia pahang/ 2 

Bruoia timori3 

Dipetalonema qraci/e4 

Dirofilaria immitis5 

Dirofilaria repens5 

Litomosa westi 4 

Litomosoides sigmodontis'·" 
Litomosoides hrasileiensis4 

Litomosoides ga/i:::ai 4 

Litomosoides hamletti 4 

Mansone//a ozzard/ 
Onchocerca volvulus8 

Onchocerca ochengi' 
Onchocerca gutturosa1 

Onchocerca gihsoni' 
Onchocerca lupi" 
Onchocerca cervica/i/0 

Wuchereria bancrojii/.2 

Absent 

Acanthocheilonema viteae1
·
0 

A canthochei/onema reconditwn4 

Filaria martis4 

Foleyella .furcata4 

Litomosoides yutajensis4 

Loa loa4
·
11 13 

Mansonella perstans12 

Ochoterenella sp. 4 

Onchocerca fiexuosa'~· 14 

Setaria equina, 4.1
5 

Setaria lahiatopapillosa4 

Setaria tundra4 

Source: I, Bandi et a!. ( 1998); 2, Taylor et al. (1999); 3, Fischer et a!. (2002b ); 4, 
Casiraghi et al. (2004); 5, Sironi et al. (1995); 6, Hoerauf eta!. (1999); 7, Casiraghi 
eta/. (2001); 8, Henkle-Diihrsen et al. (1998); 9, Egyed eta!. (2002); 10, GeneBank 
accession AY095210; ll, Buttner et al. (2003) 12, Grobusch et al. (2003); 13, 
McGarry et a!. (2003); 14, Plenge-Bonig et a!. ( 1995) 15, Chirgwin et a!. (2002). 

"The species listed as positive for Wolbachia are those for which positive PCR and 
gene sequence data have been obtained (see references below); in addition, there is 
microscopical evidence (electron microscopy and/or immunohistochemical staining) 
that further filarial species of the genus Onchocerca harbour Wolbachia: 0. armillata, 
0. dukei, 0. fasciata, 0. tarsicola, 0. jakutensis, 0. lienalis (Franz et al., 1987; Franz 
and Copeman 1988; Plenge-Bonig et al., 1995; Determann et al., 1997; Henkle­
Diihrsen et al., 1998; M. J. Taylor and D.W. BUttner, unpublished). 

this case, negative species in this subfamilies could represent either a 
primitive absence of the symbiosis or the effect of a secondary loss. 
Even though the available information does not allow one to choose 
one of the two scenarios, the close relationship of some positive and 
negative species in the Onchocercinae/Dirofilariinae supports the hy­
pothesis that at least in a few occasions the association with Wo­
lbachia was lost during evolution. Outside the subfamily 
Onchocercinae/Dirofilariinae, there are no other nematodes in which 
Wolbachia has thus far been found (e.g. Bordenstein et a!., 2003a). 
The results of only one screening for Wolbachia in nematodes outside 
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the Spirurida has been published, but the examination of non-filarid 
nematode species has been performed in several laboratories with no 
evidence for the presence of Wolbachia (C. Bandi, unpublished; 
T.J.C. Anderson, pers. comm.; G. Favia, pers. comm.). 

The apparent singularity of the Onchocercinae and Dirofilariinae 
among all the other nematodes, i.e. the high prevalence of species 
infected by Wolhachia, seems to support the hypothesis of a single 
acquisition of the association with this bacterium. However, phylo­
genetic analysis splits the Wolbachia of filarial nematodes into three 
different supergroup, C, D and F (Figure 1). The branching order of 
Wolbachia supergroups is still to be established; should future anal­
yses show that the supergroups encompassing nematode Wolbachia 
form a monophyletic lineage, the hypothesis of a single acquisition 
would be supported; should the origin of these supergroups be poly­
phyletic, this hypothesis would be weakened (even though, in this 
case, one might also suggest a single acquisition of Wolbachia by 
filarial nematodes, followed by some events of horizontal transmis­
sion to arthropods). In this respect, there is only one result of phylo­
genetic analyses, which appears firmly established: the F supergroup 
encompasses Wolbachia from both filarial nematodes (i.e. Mansonella 
spp.) and arthropods (i.e. termites), and this result is supported by the 
analysis of all of the genes thus far examined (M. Casiraghi et al., 
unpublished). The relatively close relationship between Wolbachia 
from Mansonella spp. and termites suggests that a further event of 
horizontal transmission of Wolbachia between nematodes and ar­
thropods might have occurred, in addition to the original transmis­
sion event that presumably established the association in nematodes. 

2.3. Distribution and Phylogeny of Wolbachia in the 
Onchocercinae and Dirofilarinae 

Among the Onchocercinae and Dirofilariinae, Wolbachia occur in the 
main agents of human and animal filariases. Examples of filariae with 
Wolbachia are Onchocerca volvulus (the agent of river blindness) W 
bancrojii and Brugia malayi (agents of lymphatic filariasis), and Di­
rofilaria immitis (the agent of canine and feline heartworm disease). 
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Remarkable exceptions among the filariae of humans are Loa loa and 
Mansonella perstans (Brouqui et al., 2001; Buttner et al., 2003; 
Grobusch et al., 2003; McGarry et al., 2003). In species harbouring 
Wolbachia, the prevalence appears to be 100% (i.e. all the individuals 
examined have been shown to be positive). Moreover, the symbiosis 
appears stable along evolutionary times: main branches of filarial 
evolution are composed of species harbouring Wolbachia (Casiraghi 
et al., 2001 ). This is shown for example by the phylogenetic lineage 
encompassing the genera Onchocerca and Dirofilaria, in which there 
is only one negative species (Onchocerca flexuosa) out of the numer­
ous species thus far examined (Casiraghi et al., 2004). It is also note­
worthy that there are no indications for multiple infection of a single 
host, or for the presence of different "types" of Wolbachia in a 
given filarial species. In summary, there is overall evidence that 
Wolbachia symbiosis with filarial nematodes has been stable and 
species-specific for long evolutionary periods, while there is evidence 
for only sporadic losses of the symbiosis during the evolution of a few 
species. 

With few exceptions, the distribution and phylogenetic patterns of 
Wolbachia infection in arthropods is in general remarkably different 
from the one observed in filarial nematodes. In general, not all pop­
ulations within a species, and not all individuals within a population 
are infected by Wolbachia. In addition, at the high taxonomic level, 
the phylogeny of Wolbachia usually does not match that of the host 
species. There are indeed several examples of distantly related insect 
species whose wolbachiae are closely related. In addition, several 
studies have provided evidence for the horizontal transmission of 
Wolbachia between insect species. Multiple Wolbachia infections are 
also known to occur in insects. The distribution and phylogeny of 
Wolbachia in arthropods thus indicate that the infection is less spe­
cies-specific than in nematodes, with frequent events of horizontal 
transmission. Finally, in arthropod Wolbachia there is strong 
evidence for the occurrence of genetic recombination (Werren and 
Bartos, 2001; Jiggins et al., 2001). The pattern is again different in 
nematode Wolbachia, in which genetic recombination does not 
appear to occur (Jiggins, 2002; Casiraghi et al., 2003). An absence 
of recombination among strains of symbiotic bacteria might be a 
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consequence of an absence of horizontal transmission and multiple 
infections. Under this perspective, there is an overall consistency 
of the information available about the population structure of 
Wolbachia in nematodes. 

3. EVIDENCE FOR DEPENDENCE 

3.1. Indirect Evidence 

Vertical transmission can lead to the establishment of different 
kinds of host-symbiont relationships, or specializations (Werren and 
O'Neill, 1997; Bandi eta!., 200la; Dedeine eta!., 2003). An obvious 
pathway is towards mutualistic symbiosis: the symbiont will increase 
its own fitness by increasing the fitness of the host that is involved in 
its transmission. Another possible outcome is to become a reproduc­
tive parasite: by manipulating host reproduction, the symbiont can 
reduce the fitness of those members of the host species, which are not 
involved in its transmission. There is however no intrinsic conflict 
between mutualistic symbiosis and reproductive parasitism: for ex­
ample, a maternally inherited microorganism could be beneficial to­
wards females (the host sex, which is responsible for transmission to 
the offspring) while being detrimental towards males (which are not 
involved in transmission). In arthropods, Wolbachia appears in most 
of the known cases to act as a reproductive parasite. There are how­
ever examples of arthropods in which Wolbachia is needed for host 
reproduction (i.e. in the parasitic wasp Asobara tabida; Dedeine eta!., 
2001) and where reproductive parasitism and mutualism coexist (i.e. 
in the mosquito Aedes albopictus, where a CI-inducing Wolbachia 
strain also increases female fecundity; Dobson et a!., 2002). Which 
kind of role could we expect for Wolbachia in filarial nematodes? 
In this section we will discuss the indirect evidence, which suggests 
that the association between Wolbachia and filarial nematodes is 
obligatory. 

There are three main aspects in which nematode and arthropod 
Wolbachia appear different, suggesting that this bacterium in the two 
hosts should have adopted different evolutionary strategies: (1) the 
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different rate of horizontal transmission, (2) the efficiency of vertical 
transmission and (3) the prevalence of multiple infection. In general, 
the pattern observed in arthropods indicates that the association is 
less stable and species-specific than in nematodes, with evidence for 
horizontal transmission, multiple infection and recombination be­
tween strains. The patchy distribution of Wolbachia in arthropods 
also suggests that losses of the association with this bacterium could 
be more frequent than in nematodes. 

In nematodes, the distribution and phylogenetic patterns of 
Wolbachia appear more similar to those generally observed in oblig­
atory symbionts (1 00% prevalence; consistency of host-symbiont 
phylogenies; main phylogenetic branches in which the association is 
observed in ali-or almost all-species; no evidence for multiple in­
fections). It must be highlighted that current hypotheses on the ev­
olution of virulence of microorganisms suggest that multiple 
infections hamper the evolution of obligatory jmutualistic symbiosis 
(mainly for the competition for the host resource among unrelated 
strains/clones), while a strict vertical symbiont transmission, with no 
chances for multiple infections, should lead to virulence reduction via 
kin-selection (Herre et al., 1999). In conclusion, in addition to the 
above resemblances between nematode Wolbachia and the most well­
known obligatory bacterial symbionts of insects (e.g. Buchnera in 
aphids and Blattabacterium in cockroaches; Baumann et al., 1995 and 
Lo et al., 2003), also from the theoretical point of view the association 
between Wolhachia and filarial nematodes might be expected to be 
obligatory or, at least, not parasitic. 

Gene sequence analysis has provided a further indication that the 
association between Wolbachia and filarial nematodes is not parasitic. 
A comparison of the rates of nucleotide substitutions of the 
Wolbachia surface protein (WSP) has evidenced an excess of non­
synonymous substitutions in the symbiont of arthropods (Baldo 
et al., 2002; Jiggins et al., 2002). Selective pressures for variation of 
symbiont proteins interacting with the host cells/tissues/fluids are ex­
pected to occur in those cases in which the symbiont has some det­
rimental effect on the host (i.e. it is a parasite), and indicate that the 
host and the symbiont are engaged in an arms race. It is intriguing 
that no bias towards non-synonymous substitutions is observed in 



------~=~-------------... -------
260 MARK J. TAYLOR ET AL. 

nematode WSP. This lack of evidence for an arms race in nematode 
Wolbachia seems to suggest that the association with the host is more 
"peaceful" than in arthropods. According to some authors this might 
also be suggestive of a mutualistic interaction (Jiggins et al., 2002; 
Baldo et al., 2002). 

3.2. Direct Evidence 

As discussed above, the information available on the distribution, 
phylogeny and molecular evolution of Wolbachia suggests that filarial 
nematodes and their endosymbionts are reciprocally dependent. Ex­
perimental work using antibiotics have provided direct evidence for 
the existence of this dependence. Indeed, tetracycline and derivates, 
which are effective against bacteria of the order Rickettsiales, have 
been shown to have detrimental effects on filarial nematodes, which 
harbour Wolbachia, and no effects on the Wolbachia-free filaria 
Acanthocheilonema viteae (Hoerauf eta!., 1999; McCall eta!., 1999). 
Papers suggesting that tetracycline might have anti-filarial activity 
have been published earlier (Bosshardt eta!., 1993), even though the 
possibility that these anti-filarial properties were mediated by effects 
on Wolbachia has been discussed only recently (Genchi et a!., 1998; 
Bandi et al., 1999; Hoerauf et al., 1999, 2003a; McCall et al., 1999; 
Langworthy et al., 2000; Taylor and Hoerauf, 2001). More recently, 
other antibiotics with anti-rickettsial properties have been demon­
strated to also have anti-filarial properties (see Table 2 and Section 
3.3). 

Various antibiotics have been tested for their anti-filarial activity, 
both in vivo and in vitro. The studies have involved various filarial 
species and hosts, with different effects depending mainly on the de­
velopmental stage of the filaria (Table 2). In most cases, the effects 
are sublethal with inhibition of embryogenesis and infertility (Brugia 
pahanyi, Dirofilaria immitis, Litomosoides sigmodontis, Onchocerca 
volvulus-Bosshardt et a!., 1993; Genchi et al., 1998; Bandi et a!., 
1999; Hoerauf eta!., 1999, 2000a, b; Townson et al., 2000), inhibition 
of third-stage larval development and in vivo prophylaxis (B. pahangi, 
L. sigmodontis -Bosshardt et al., 1993; Hoerauf et al., 1999; McCall 
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Table 2 The effects of antibiotics on filarial nematodes 

Species Host;model Antibiotic Parasitological effects 

Acanthocheilonema riteaea Jird.·"Afastom;·s Tetracycline None 
Brugia malayi In ritro Tetracycline' Reduced motility, viability and microfilarial 

Rifampicin release 

Inhibits L3/L4 moult and motility 
Brugia pahangi Jirdiin vitro Tetracycline Inhibits larval development, embryotoxic. 

prophylactic. macrofilaricidal 
In t'itro Rifampicin Reduced adult viability and microfilarial release. 

embryotoxic. macrofilaricidal 
Dirofilaria immitis Dog1in •·itro Tetracycline Embryotoxic. inhibits L3.•L4 moult and 

transovarial transmission 
Litomosoides sigmodontis Mouse;Cotton Tetracycline Inhibits larval development 

rat Rifampicin Infertility and stunted growth 

Onchocerca qutturosa In ritru Tetracycline Reduced motility and viabih>y 
Rifampicin 

Onchocerca liena!is Mouse Tetracycline Reduced microfiladcrmia 
Rifampicin 

Onchocerca ochenqi Cow Oxytetracycline Embryotoxic, macrofilaricidal 
Onchocerca rofl'ulus Human Doxycycline Embryotoxic, sustained amicrofiladermia 

Wuchereria han croft i Human Doxycycline 
following ivermectin treatment 

Amicrofilaremia, macrofilaricidal 
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et a!., 1999), stunting of adult worm growth (L. sigmodontis-Ho­
erauf et a!., 1999). However, in Onchocerca ochengi-infected cattle, 
protracted treatment has been shown to be macrofilaricidal (Lang­
worthy et a!., 2000) and shorter term treatment of humans infected 
with 0. volvulus showed a trend towards frequent degeneration or 
death of adult worms (Hoerauf eta!., 2003a). Recent data from trials 
with W bancrofti, infected humans also provide evidence for a strong 
macrofilaricidal effect (Taylor et al., 2005). 

There is general agreement that the anti-filarial effects of antibiotic 
th~rapy are a result of activity against Wolbachia because antibiotics 
have no effect on the Wolbachia-negative filaria A. viteae (Hoerauf 
et al., 1999; McCall et al., 1999) and because the anti-bacterial effect 
precedes the anti-filarial effects (Langworthy et a!., 2000; Hoerauf 
et a!., 2003a). Interestingly, a recent study found that irradiation of 
B. malayi leads to reductions in bacterial populations with dose­
dependent effects on worm motility, viability and arrested develop­
ment of embryogenesis in a similar manner to treatment with anti­
biotics, potentially attributing the effects of irradiation to the loss of 
the endosymbionts (Rao et a!., 2005). Other studies have suggested 
that a chemically modified tetracycline maintains the capacity of 
blocking the L3-L4 moult in B. malayi without apparent depletion of 
Wolbachia (Rajan, 2004). However, the activity of this modified 
compound against Wolbachia was monitored only with non-quanti­
tative PCR (other studies have shown that real time PCR has to be 
used to assess the extent of reduction of Wolbachia, Hoerauf et a!., 
2003b). If this compound did indeed not show activity against 
Wolbachia, it may indicate that the in vitro moulting assay may also 
be sensitive to effects by tetracyclines that are independent from their 
activity against Wolbachia, as the duration of treatment ( <2 weeks) is 
too short to reduce Wolbachia beyond the threshold where they be­
come undetectable by immunohistology, and are reduced by > 95% 
before anti-parasitic effects occur (Hoerauf et a!., 2003a, b). Alter­
natively, the activity may inhibit Wolbachia dependent processes (e.g. 
through inhibition of protein synthesis), which occur independently 
of the depletion of bacteria. Further studies using aposymbiotic spe­
cies and more precise measures of bacterial viability would be re­
quired to address these issues. In general, the activity of antibiotics 
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against filarial nematodes in vitro often appear to induce effects more 
rapidly than can be achieved in vivo (e.g. Townson eta!., 2000; Rao 
and Weil, 2002; Rao eta!., 2002). 

3.3. Antibiotic Therapy as a New Treatment for Human 
Filariasis 

Initial trials using a six-week course of doxycycline treatment against 
0. volvulus were effective at depleting the bacteria and resulted in a 
block of embryogenesis, which persists for up to two years after the 
start of treatment. The apparent permanent block in embryogenesis 
was reflected in sustained reductions in skin microfilariae, the cause of 
onchocercal disease (Hoerauf eta!., 2000a, 2001, 2003a). Depletion of 
Wolbachia by doxycycline has also been demonstrated in human 
lymphatic filariasis patients infected with W bancrofti. Doxycycline 
administered for 6 weeks at 200 mg/day resulted in a reduction of 
> 95% of Wolbachia levels, assessed from blood microfilariae, com­
pared to pre-treatment levels (Hoerauf eta!., 2003b). This treatment 
led to a chronic decline in microfilarial loads, followed by an am­
icrofilaremia, which was highly significant at 12 months (Hoerauf 
et al., 2003b) and sustained for almost 2 years (A. Hoerauf et a!., 
unpublished), in contrast to the control treatment with ivermectin. 
Although direct proof is lacking owing to the unavailability of adult 
worms, these data suggest that the mode of action of doxycycline is 
equivalent to that observed in animal models and human onc­
hocerciasis, namely a block in embryogenesis in the adult female 
worms when Wolbachia are absent or at least below a certain 
threshold. 

Importantly, a recent placebo-controlled trial in humans infected 
with W bancrofti has demonstrated a clear macrofilaricidal effect of 
doxycycline (Taylor et al., 2005). When administered for 8 weeks at 
200 mgjday, the treatment resulted in a complete amicrofilaremia in 
28/32 patients assessed and a lack of scrotal worm nests as deter­
mined by ultrasonography in 21/27 patients (also known as 'filarial 
dance sign', Dreyer et a!., 1994; Mand et a!., 2003). In the other 
patients, the number of worm nests declined. This was significantly 
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different from placebo patients where lack of worm nests was only 
observed in 3/27. Since published (Dreyer et al., 2002a, b) and un­
published (S. Mand and A. Hoerauf) data demonstrate that scrotal 
worm nests are stable over time and only a small number of male 
patients do not show scrotal worm nests, the lack of worm nests in 
doxycycline-treated patients are highly unlikely to be due to a spon­
taneous loss. The observed loss of worm nests, suggesting death of 
adult worms, was corroborated by a significant decline in circulating 
filarial antigen levels as a second measure of adult worm loss in do­
xycycline-treated individuals compared to no change in placebo 
groups (Taylor et al., 2005). 

Loss of worm nests was observed at 14 months after the onset of 
treatment in this study, and this fits well with the fact that circulating 
filarial antigen levels continuously declined over this time. This sug­
gests that macrofilaricidal effects induced by doxycycline need more 
than a year to manifest. This is underscored also by the above-men­
tioned study of 6-week doxycycline treatment, where we failed to 
observe a significant loss of worm nests after 12 months, but could 
easily detect it after 18 and 22 months, accompanied by stronger 
reduction in circulating filarial antigen levels and lymphatic vessel 
dilation (A. Hoerauf et a!., unpublished). New, placebo-controlled 
studies where doxycycline was administered for 6 weeks at 200 mgj 

day confirm the above data and prove for the first time by a lon­
gitudinal observation using ultrasonography that worm nests that 
were detected pre-treatment disappeared by 18 months after do­
xycycline, while nests in placebo patients remain stable (S. Mand and 
A. Hoerauf eta!., unpublished observation). Again, this was corrob­
orated by an even higher reduction in circulating filarial antigen levels 
after 24 months. A three-week course of doxycycline also abolishes 
microfilaremia for over a year and reduced the severity of adverse 
reactions to ivermectin and albendazole, but failed to show macro­
filaricidal effects even after 24 months (J. Turner et al., unpublished 
observation). Since real-time PCR showed a higher residual Wo­
lbachia gene copy number per microfilaria than did the 6 weeks 
course, the data suggest that embryogenesis may be blocked at a 
lower degree of Wolbachia reduction than required for macro­
filaricidal effects. 
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The results obtained from human trials so far have unequivocally 
demonstrated the superior efficacy of doxycycline both for onc­
hocerciasis and lymphatic filariasis. The major difficulty at present is 
the required length of treatment, as well as the known contra-indi­
cations of doxycycline (not to be given to children < 9 years of age 
and pregnant or breast-feeding women), which makes this approach 
currently unsuitable for mass treatment. Nevertheless, the trial out­
comes argue clearly for the use of doxycycline for selected indications 
including (i) treatment of individuals that leave an endemic area for a 
long period, because the filarial stages that are causative for pathol­
ogy (microfilariae in onchocerciasis, adult worms in bancroftian fi­
lariasis) will be depleted (onchocerciasis) or at least dramatically 
reduced (bancroftian filariasis); and (ii) hyperreactivity to microfil­
ariae, as observed in the 'Sowda' form of onchocerciasis and in trop­
ical pulmonary eosinophilia, where the re-appearance of microfilariae 
following microfilaricidal therapy with ivermectin or diet­
hylcarbamazine (DEC), respectively, is particularly undesirable. 

More indications are likely to appear on completion of current 
trials. Studies are underway in Indonesia that indicate a similar suc­
cess of doxycycline against brugian filariasis, as predicted from an­
imal models and for the treatment of onchocerciasis in populations 
co-infected with Loa loa currently excluded from mass drug admin­
istration due to rare encephalopathy reactions to ivermectin. In ad­
dition, our pilot studies have shown a beneficial effect on lymphatic 
pathology in bancroftian filariasis: thus, supratesticular lymphoceles 
induced by the adult worms have shown to be significantly reduced in 
size (A. Hoerauf and M.J. Taylor, unpublished), and lymphedema 
patients treated with doxycycline showed reduced degrees of their 
pathologies (grading according to Dreyer eta!., 2002a, b) compared 
to placebo patients who were only supervised to perform standard 
lymphedema management (Dreyer et al., 2002). Currently, larger 
studies are underway to add proof to these preliminary findings. 

Finally, a growing concern is the apparent existence of 0. volvulus 
worms that show a "suboptimal response" to ivermectin (Awadzi 
et a!., 2004a, b). While a clear resistance mechanism has not yet been 
established, there is plenty of evidence for resistance of gastro-intes­
tinal helminths of livestock against ivermectin (Wolstenholme et a!., 
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2004). Treatment with ivermectin is known to cause a loss of poly­
morphism at certain loci of the /)-tubulin, y-aminobutyric-acid-re­
ceptor, glutamate-gated chloride channel and A TP-binding-cassette 
(ABC) transporter genes of ivermectin-resistant Haemonchus contort­
us. Intriguingly, a loss of polymorphisms at some of these loci, no­
tably ABC transporter genes, P-glycoprotein and /)-tubulin, has also 
been observed after treatment of 0. volvulus with ivermectin (Ardelli 
and Prichard, 2004; Eng and Prichard, 2005). If resistance to 0. vol­
vulus did indeed occur during the envisaged 30 year + mass treat­
ment for onchocerciasis, there is currently no real alternative drug to 
use, given that suramin is not an option in a field setting and DEC has 
known contra-indications (Awadzi, 2003). Since new developments 
may take up to 10 years from the first high-throughput screens, 
waiting for short-term breakthroughs in this field is highly unrealistic. 
Thus, while no one hopes that this scenario will happen, it cannot be 
excluded that one may have to consider early application of an anti­
wolbachial treatment against the spread of resistance. Again, studies 
are being planned to formally prove that anti-wolbachial treatment is 
an option for worms with a suboptimal response to ivermectin. In the 
context of lymphatic filariasis, similar concerns exist not only for 
ivermectin resistance but also for albendazole and DEC. A recent 
study has identified single nucleotide polymorphisms of /)-tubulin 
associated with benzimidazole resistance in populations of ban­
croftian filariasis from Ghana and Burkina Faso (Schwab et al., in 
press). The putative resistance alleles occur in "'26% in untreated 
populations rising to 60% after one round of treatment and 86% 
after two rounds, suggesting the selection for resistance in these pop­
ulations. 

3.4. Genomic Insights into the Nature of the Symbiosis 

The recent completion of genome sequencing and annotation of the 
metabolic pathways of Wolbachia from B. malayi have identified im­
portant candidates for the dependency of the symbiosis (Foster et al., 
2005). In comparison with insect Wolbachia and related Rickettsia, 
the genome of Wolbachia from B. malayi is drastically reduced in size, 
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a feature common to the lifestyle of other endosymbiotic bacteria. 
However, Wolbachia contain more intact metabolic pathways, which 
may be important in contributing to the welfare and fecundity of its 
host. The ability to provide riboflavin, flavin adenine dinucleotide 
(FAD), haem and nucleotides are likely to be the bacterial contri­
bution, whereas the host nematode provides amino acids required for 
bacterial growth with the exception of the only amino acid synthe­
sized by the bacteria, meso-diaminopimelate, a major component of 
peptidoglycan. The cell wall biosynthesis pathways are devoid of 
genes required for the biosynthesis of lipopolysaccharide (LPS) in 
common with the related Wolbachia from Drosophila (Wu et al., 
2004) and Ehrlicha and Anaplasma sp. (Lin and Rikihisa, 2003). In 
addition, an unusual peptidoglycan structure is suggested with some 
possible similarities to peptidoglycan-derived bacterial cytotoxins. 
Other features include a common type IV secretion system and an 
abundance of ankyrin domain-containing proteins, which could reg­
ulate host gene expression as suggested for Ehrlichia phagocytophilia 
AnkA (Park et al., 2004). Glutathione biosynthesis genes may be a 
source of glutathione for the protection of the host nematode from 
oxidative stress or immunological effector molecules. Haem from 
Wolbachia could be vital to worm embryogenesis as there is evidence 
that moulting and reproduction are controlled by ecdysteroid-like 
hormones (Warbrick et a!., 1993), whose synthesis requires haem. 
Depletion of Wolbachia might therefore halt production of these 
hormones and block embryogenesis. Alternatively, or in addition, 
Wolbachia may be an essential source of nucleotides during embryo­
genesis. Thus, the completion of the wBm genome offers a wealth of 
information, which may help to understand the molecular basis for 
the endosymbiosis between filarial nematodes and Wolbachia. We 
now know which metabolites might be provided by Wolbachia to the 
nematode and which are required by the endobacteria from the nem­
atode. This may open up the exciting possibility to find and test drugs 
already registered for use in humans, which might inhibit key bio­
chemical pathways in the Wolbachia that could lead to sterility or 
killing of the adult worms. 

Genomic sequencing has also been useful in re-analysing the 
origin of a catalase gene, previously attributed to Wolbachia from 

------------------~~~~ _j 
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Onchocerca sp. (Henkle-Duhrsen eta!., 1998), but which instead de­
rives from pseudomonad contamination of the eDNA libraries from 
which it was originally cloned (Foster et a!., 2004). The multiple 
effects of antibiotic depletion on the nematode and the dynamics of 
bacterial populations in different developmental stages suggest the 
worms have become dependent on the bacteria for a diverse range of 
biological processes and may have distinct stage-specific function. 
Further studies incorporating biochemical and functional genomic 
approaches should help unravel the role of these different metabolic 
pathways throughout the nematode life cycle and identify those suit­
able as targets for novel anti-symbiotic therapy. 

4. WOLBACH/A-MEDIATED ACTIVATION OF 
INFLAMMATION 

4.1. Lymphatic Filariasis 

Soluble extracts of B. malayi adults or microfilariae induce a potent 
innate inflammatory response in vitro and in vivo (Taylor eta!., 2000, 
Saint-Andre eta!., 2002, Gillette-Ferguson eta!., 2004). The activa­
tion of innate inflammation requires CD14 and Toll-like receptor 4 
(TLR-4) pattern recognition receptors and the activity is lost follow­
ing antibiotic depletion of bacteria and absent from soluble extracts 
derived from aposymbiotic species (A. viteae and L. loa, Taylor eta!., 
2000 and unpublished). 

Inflammatory responses also occur following anti-filarial drug 
treatment particularly in patients with high parasite burdens. Severe 
adverse reactions are associated with the increase in systemic pro­
inflammatory cytokines and inflammatory mediators (Haarbrink 
eta!., 2000). PCR and immunoelectron microscopy analysis of plas­
ma samples following the treatment of B. malayi with DEC showed 
the persistent presence of Wolbachia in patients with severe systemic 
inflammation (Cross et al., 2001). In animal models the production of 
TNFIX following the chemotherapy of B. malayi microfilariae only 
occurred in mice with an intact TLR-4 receptor, suggesting that the 
release of Wolbachia is responsible for this inflammation (Taylor 
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et al., 2000). Recently, clinical trials have provided further evidence to 
support the role of Wolbachia in the presentation of adverse reac­
tions. In patients infected with W bancrojii, prior treatment with a 
3-week course of doxycycline to deplete Wolhachia prevented mod­
erate adverse reactions to albendazole and ivermectin, whereas in 
individuals in the placebo group levels of Wolhachia released into 
plasma were related to the incidence of adverse reactions, levels of 
plasma pro-inflammatory cytokines and pre-treatment microfilarial 
load (J. Turner et al., unpublished observation). 

Further effects of TLR-4 mediated responses have been reported 
following infection of mice with Litomosoides sigmodontis (Pfarr 
et al., 2003). In C3H/HeN mice infection results in adult female worm 
development including females containing mature microfilariae, al­
though free microfilariae are not detected. Infection ofTLR-4 mutant 
C3H/HeJ mice produced worms with an increased fertility and the 
production of microfilariae. These observations suggest TLR-4-me­
diated immune responses regulate worm fertility either by inhibiting 
embryogenesis (a process dependent on Wolbachia) or direct killing 
of released microfilariae. Therefore, the inflammatory stimulatory 
activity released by dead worms is derived from endosymbiotic Wo­
lbachia bacteria, rather than the nematode. This finding led to a 
proposed mechanism by which repeated exposure to Wolbachia-me­
diated inflammation may lead to damage of the infected lymphatics 
and tolerization of innate immunity, leading to susceptibility to the 
opportunistic infections commonly associated with lymphoedema 
and elephantiasis (Taylor et al., 200 I). Indeed, experimental infec­
tions of monkeys with B. malayi have been reported, in which an­
tibody responses to WSP develop prior to and throughout episodes 
of lymphoedema (Punkosdy et a!., 2001). Moreover, human anti­
body responses to WSP are elevated in individuals with hydrocoele 
and lymphoedema suggesting acquired immune responses to 
Wolbachia maybe associated with the development of chronic pa­
thology (Punkosdy et al., 2003). The pilot studies mentioned above in 
human lymphoedema patients benefiting from doxycycline treatment 
further underscore these findings and suggest that anti-wolbachial 
chemotherapy, in addition to its anti-parasitic activity, may also have 
a beneficial effect on pathology. 
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4.2. Onchocerciasis 

Inflammatory activity derived from Wolbachia has also been dem­
onstrated in Onchocerca sp. (Brattig et a!., 2000, Saint-Andre et al., 
2002). As with lymphatic filariasis, Wolbachia are released into the 
blood following anti-filarial chemotherapy, with peak DNA levels 
correlating with clinical reaction scores and increased levels of 
TNFa, neutrophils and anti-bacterial peptides (Keiser et a!., 2002). 
Wolbachia are also responsible for the recruitment and activation of 
neutrophils in the granulomatous response infiltrating adult worm 
subcutaneous nodules and disappear when Wolbachia are cleared 
using doxycycline (Brattig et al., 2001; Volkmann et al., 2003). These 
studies suggest that living worms may release Wolbachia and/or their 
products, possibly from uterine debris (Kozek, 2005), which promote 
inflammatory responses adjacent to the worms. 

Neutrophil-mediated inflammation is also a feature of ocular pa­
thology following death of microfilariae in the cornea. In a mouse 
model of ocular inflammation, increases in stromal thickness and 
haze and neutrophil-mediated keratitis developed in response to 
0. volvulus and B. malayi extracts containing Wolbachia, but was 
reduced or absent when parasite extracts derived from doxycycline­
treated 0. volvulus or Wolbachia-free species (A. viteae) were used 
(Saint-Andre et a!., 2002). The recruitment of neutrophils into the 
cornea was also dependent on TLR-4 together with reduced expres­
sion of platelet endothelial cell adhesion molecule (PECAM) and the 
chemokines macrophage inflammatory protein-2 and keratinocyte­
derived chemokine (KC), suggesting their upregulation by Wolbachia 
stimulates the recruitment of neutrophils to the cornea. Further 
studies in this model show that microfilariae injected into the cornea 
become surrounded by neutrophils after 18 h (Gillette-Ferguson 
et a!., 2004). Immuno-electron microscopy revealed that the major 
WSP was prominent within neutrophil phagolysomes and associated 
with activation. Moreover, whole bacteria were shown to directly 
stimulate purified neutrophils to secrete TNFa and chemokines. 
Studies in TLR-2,-4,-9 and MyD88 knockout mice showed that 
stromal haze and neutrophil-mediated inflammation induced by 
whole bacteria and soluble extracts of 0. volvulus in wild-type mice 
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were abolished in the absence of MyD88 and partially dependent on 
TLR-2 and -4 but unaffected by the absence of TLR-9 (E. Pearlmann 
et al., unpublished observation). Intriguingly, a recent finding that 
strains of 0. volvulus responsible for severe ocular disease contain 
higher levels of Wolbachia than the mild form, which results in little 
ocular disease, further supports the association of Wolbachia with 
ocular pathology (Higazi et al., 2005). 

4.3. Dirofilariasis 

Genomic sequencing has shown that Wolbachia lack the genes re­
quired for LPS biosynthesis (Wu eta!., 2004; Foster eta!., 2005). The 
search for the molecular nature of the stimulatory activity has there­
fore focused on other candidate molecules found on the surface 
membrane of the bacteria. A series of experiments using purified 
recombinant WSP from D. immitis Wolbachia have shown that it can 
activate innate inflammatory activity. WSP activates IL-8 transcrip­
tion and stimulates chemokinesis in canine neutrophils (Bazzocchi 
et a!., 2003). Further studies showed that WSP induces pro-inflam­
matory cytokine production from murine macrophages and dendritic 
cells and human whole blood cell cultures (Brattig et al., 2004). The 
stimulation of innate responses was dependent upon both TLR-2 and 
TLR-4 in transfected human fibroblastoid cells and murine gene 
knockout and mutant cells. WSP also stimulated anti-inflammatory 
IL-l 0 and prostaglandin E2 responses and IFNy production from 
peripheral blood cells together with lgG 1 antibody responses from 
onchocerciasis-infected individuals. These experiments suggest WSP 
is a major inducer of the inflammatory activity of Wolbachia. Wheth­
er it is the exclusive inflammatory molecule from Wolbachia is the 
subject of ongoing studies in this and other filarial species. 

Taken together, these studies show Wolbachia are intrinsically pro­
inflammatory, as demonstrated by the ability to activate innate cel­
lular immunity. Whole bacteria or their products induce activation of 
macrophages and monocytes, neutrophils or dendritic cells leading to 
the secretion of pro-inflammatory cytokines and chemokines, 
through TLR-2, TLR-4 and MyD88 dependent signalling pathways. 

----------------------~~-----------------------------------=====~------~ -~ 
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Evidence to suggest that Wolbachia stimulates inflammatory activity 
in people infected with filariasis comes from studies on the systemic 
inflammatory adverse reactions to anti-filarial chemotherapy. 

4.4. Wolbachia Serology 

Antibody responses to a number of Wolbachia antigens have been 
observed in both human and animal filariasis, including the major 
surface protein (WSP), HSP60, HtrA-type serine protease and as­
partate aminotransferase (Bazzocchi et al., 2000; Punkosdy et al., 
2001, 2003; Simon eta!., 2003; Morchon et al., 2004; Brattig et al., 
2004; Lamb et al., 2004; Kramer et al., 2005, in press). These studies 
illustrate the exposure of Wolbachia to the acquired immune system 
and suggest both these and additional antigens, both specific to Wo­
lbachia and cross-reactive to other bacterial antigens are a feature of 
the immune response to filarial infection. 

In dogs and cats infected with D. immitis, Wolbachia has been 
detected in a number of organs and tissues including the glomerular 
capillaries of the kidney and within inflammatory cells of the lungs 
and liver (Kramer et al., 2005, in press) and raise antibody responses 
to WSP (Bazzocchi et al., 2000; Morchon et al., 2004; Kramer et al., 
2005, in press). Also in people diagnosed with pulmonary di­
rofilariasis, IgG responses to WSP are elevated in clinical cases com­
pared with D. immitis sero-positive 'healthy' individuals and donors 
from non-endemic areas, suggesting a possible sero-diagnostic test for 
pulmonary dirofilariasis (Simon et al., 2003). 

Studies on WSP serology in human filariasis show an intriguing 
association with the presentation and duration of chronic disease in 
lymphatic filariasis (Punkosdy et al., 2003). Moreover, longitudinal 
analysis in both primate and human cases show a transient elevation 
in WSP reactivity is temporally associated with the onset of lymph­
oedema and suggests immune responses evoked by Wolbachia may 
trigger the development of disease (Punkosdy et al., 2001, 2003). The 
death of adult worms, a critical factor in the development of chronic 
disease, is associated with the release of endosymbionts into the 
blood, an event likely to lead to the activation of WSP immune 
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reactlVlty. Depletion of Wolbachia by antibiotic treatment had no 
effect on lymphatic granulomatous lesions in a primary infection of 
B. pahangi in jirds and was associated with the lack of appreciable 
WSP antibody reactivity (Chirgwin et a!., 2003). These findings are 
not unexpected as multiple exposures to infective larvae are associ­
ated with the development of WSP reactivity related to clinical lesions 
(Punkosdy et al., 2001, 2003). Additional studies have shown that 
exposure to infective larvae in particular also stimulate and maintain 
WSP responses, suggesting the death of developing larvae may also 
trigger disease progression (Lamb et al., 2004). A concept supported 
by epidemiological studies showing the level of exposure to trans­
mission is associated with acute and chronic disease (Kazura et al., 
1997; Michael eta!., 2001). Therefore, further analysis of the antigens 
and regulation of acquired immune responses to Wolbachia is im­
portant in order to understand their role in disease pathogenesis. 

5. FUTURE ADVANCES/CONCLUDING REMARKS 

Over the past six years, there has been a considerable increase in our 
knowledge of the biological significance of Wolbachia for their filarial 
hosts. We now know a great deal about their role in parasite fertility 
and survival and in the induction of immune responses associated 
with pathology and adverse reactions to classical microfilaricidal 
drugs. Most importantly, the proof of principle for a new chemo­
therapeutical approach, i.e. doxycycline against onchocerciasis and 
bancroftian filariasis, has been established. This advance has seen 
rapid progress from animal studies into use for humans in only a few 
years, and without the enormous costs usually necessary for the de­
velopment of novel drugs. 

Much more remains to be learned about the molecular basis of this 
fascinating interaction. The sequencing and annotation of the gen­
ome of the Wolbachia endosymbiont in B. malayi has provided us 
with a wealth of information for future definition of the essential 
components in this symbiosis. Targeting Wolbachia for treatment will 
allow exploitation of critical bacterial pathways with the potential to 
identify drugs that have fewer adverse reactions than those directed 
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against eukaryotic pathways. It may also circumvent one of the in­
herent problems of tropical medicine, the lack of a drug market that 

drives drug development, because drugs may already exist that can be 

predicted to act against Wolbachia, once we have learned what makes 
them so essential for their host. 
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